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ABSTRACT

This paper proposes a method to improve brain-tissue segmen-
tation, especially in subcortical region, by fusing the information
in structural magnetic resonance (MR) images and diffusion tensor
(DT) images in a sound statistical framework. The proposed method
incorporates the information in DT images by parameterizing the
space of diffusion tensors, in a principled and efficient manner, based
on a set of independent orthogonal invariants. The proposed method
couples the Markov tissue statistics of the structural-MR intensities
with the tissue statistics of the DT invariants to define multivari-
ate/joint probability density functions (PDFs) that differentiate brain
tissues. The paper shows that while the information in DT images
can allow improved differentiation between tissues in the subcor-
tical region, which comprises anatomical structures having smooth
(blob-like) shapes, it can produce unreliable results in the cortical
regions that depict convoluted sulci/gyri. The proposed method ex-
ploits these characteristics of the images by introducing an appropri-
ate anisotropic distance metric in the multivariate feature space.

Index Terms— Subcortical brain tissue segmentation, multi-
variate statistical analysis, MRI, DTI.

1. INTRODUCTION

Brain tissue segmentation in magnetic resonance (MR) images is
a fundamental problem in clinical studies of brain structure and
function. Some examples of such studies deal with measures of
tissue/structure volumes, voxel-based morphometry, etc. Although
many methods have been proposed in the last two decades [14, 15,
7, 1], segmentation of brain tissues, especially in the subcortical re-
gions, remains a challenging task. This is primarily because of low
intensity contrast in structural-MR images between the white matter
(WM) and gray matter (GM) tissues in the subcortical regions that
comprise structures such as the caudate, putamen, thalamus, etc.
To compensate for this effect, typical approaches for segmenting
subcortical structures must rely heavily on prior information, ob-
tained from training data, in the form of tissue probability maps
(probabilistic atlases) [5, 3] or shape priors [11, 8]. The availability
of suitable training data, however, for most clinical datasets, limits
the utility of such methods.

In recent years, diffusion tensor (DT) MR imaging has gained
significant popularity because of its ability to measure the anisotropic
diffusion of water in structured biological tissue. It has the ability
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to differentiate between several anatomical structures of the brain,
especially in the WM, that was impossible with structural-MR
imaging. On the other hand, DT images also contain information to
differentiate between brain tissues; WM shows highly anisotropic
diffusion, cerebrospinal fluid (CSF) shows large mean diffusivity,
and GM shows neither. In the subcortical regions, DT images have
sufficient information to discriminate between the WM and GM
tissues; much more so than structural-MR images. In this way, the
information in DT images can be exploited to improve brain tissue
segmentation.

This paper proposes a method to improve segmentation of brain
tissues, especially in subcortical region, by fusing the information
in structural-MR images and DT images in a sound statistical seg-
mentation framework. The proposed method incorporates the infor-
mation in DT images by fitting DT models at each voxel and, sub-
sequently, parameterizing the space of diffusion tensors, in a princi-
pled and efficient manner, based on a set of orthogonal independent
invariants [6]. Structural-MR images are modeled using a Markov
random field (MRF) [1]. The proposed method couples the Markov
tissue statistics of the structural-MR intensities with the tissue statis-
tics of the DT invariants to define multivariate probability density
functions (PDFs) for brain tissues. The multivariate PDFs are mod-
eled using a nonparametric density estimation scheme. The paper
shows that while the DT images can improve differentiation between
tissues in the subcortical region, which comprises structures having
smooth (blob-like) shapes, they can produce unreliable results in the
cortical regions that depict convoluted sulcul/gyral structures. The
proposed method exploits these characteristics of the images by in-
troducing an appropriate anisotropic distance metric in the multivari-
ate feature space.

2. BACKGROUND

A class of approaches for segmenting subcortical structures rely on
probabilistic atlas priors created using structural-MR images [5, 3].
Such approaches rely on the accuracy of the manual segmentations
of subcortical structures in the training data that generated the prob-
abilistic atlas as well as the accuracy of the registration method, to
map the template space to the subject space, in the absence of strong
intensity contrast in the subcortical tissues.

Barra and Boire [2] present an information-fusion technique
that extracts prior information, comprising morphological and topo-
logical properties of tissue structures, from structural-MR images
and experts. These information channels are fused in a fuzzy-logic
framework that weights the information in different channels based
on an evaluation of its accuracy. Another class of approaches rely
on deformable shape models [11, 8] that employ a shape-based
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prior, i.e. a model for the statistical distribution of shapes in some
parametric space, in a Bayesian segmentation scheme.

Some recent approaches [10, 4, 9] incorporate the information
in DT images to aid in the accurate segmentation of subcortical tis-
sue structures. Liu et al. [10] proposed to employ the mean appar-
ent diffusion coefficient (ADC) to separate the CSF from the WM
and GM tissues and to employ the fractional anisotropy (FA) to sep-
arate the WM from the GM and CSF tissues. They compute the
final tissue segmentations as defined by the overlap of the segmen-
tations, obtained independently, from the MR and DT images. In
recent work [9], Liu et al. improve their approach by employing an
expectation-maximization based algorithm [13] to combine the seg-
mentations, obtained independently, using 7 different images of ten-
sor invariants (invariant to tensor orientation) and the structural-MR
image. Employing 7 tensor derivatives, however, may lead to redun-
dant usage of information because tensor invariants themselves have
only 3 degrees of freedom.

The proposed method improves upon the previous work in sev-
eral ways. First, it proposes a data-driven technique to segment sub-
cortical tissue structures by incorporating the information in DT im-
ages, in contrast to prior-driven approaches. It shows that reliable
subcortical segmentations can be obtained by using only 2 tensor in-
variants, which form an orthogonal and independent basis of a sub-
space of the 6-dimensional space of tensors. Two examples are [6]:
(i) the space formed by tensor trace and the deviatoric-tensor norm,
and (ii) the space formed by the tensor norm and the FA. The third in-
variant is the tensor mode that is typically extremely noisy and may
not be a reliable source of information [6]. The orientation of the
tensor does not convey important information to differentiate brain
tissues. In this way, the proposed method optimally incorporates the
information in DT images for multivariate segmentation. Moreover,
incorporating several redundant sources of information during the
multivariate analysis may reduce the accuracy of the segmentation
by introducing more uncertainty/variability in the tissue statistics.

This paper also shows that imaging artifacts (e.g. low resolution,
eddy-current distortion) in typical DT-imaging acquisitions may re-
duce the efficacy of the tensor measures to differentiate the WM and
GM in the cortical region. This concern was also raised by Liu et
al. [10]. Structural-MR images, on the other hand, provide reliable
intensity contrast to enable accurate tissue differentiation in the cor-
tex. Artifacts introduced by DT imaging may also compromise the
accuracy of the registration of the DT and structural-MR images in
the cortical region [10]. The proposed method exploits this informa-
tion to spatially adapt the influence of the two modalities in comput-
ing the optimal segmentation.

3. MULTIVARIATE BRAIN TISSUE SEGMENTATION

For fusing the information in the structural-MR and DT images, the
b0 image associated with the diffusion weighted (DW) images is lin-
early aligned to the structural-MR image. The DW images are then
resampled based on this alignment in order to equate their spatial
resolution to that of the structural-MR image. The DW images are
then used to fit a DT model at each voxel.

For the segmentation framework, we impose a random-field sta-
tistical model on structural-MR and DT images [1]. This implies
that the value at each voxel v is an instance of a random variable.
We denote the random variables at each voxel in the structural-MR
image by uppercase letters Sv and those in the DT image byDv; the
values in the images at those voxels are denoted by lowercase letters
sv and dv , respectively. From the DT image, we construct images

of tensor norm and FA with the underlying random variables at each
voxel as Nv and Fv , respectively.

We model context dependence, at each voxel v, in the brain
region in the structural-MR image using a MRF with a first-order
neighborhood (6 nearest neighbors of a voxel), namely Nv . Thus,
the Markov PDF that dictates the statistical characteristics at each
voxel v is given by P ({Sv}v∈Nv

). Fusing the information from
the DT image, at each voxel v, the multivariate/joint PDF becomes
P ({Sv}v∈Nv

, Fv, Nv). We assume that the Markov PDFs for all
voxels belonging to a particular tissue are equivalent and that the
MRF is piecewise ergodic. We denote the multivariate PDF for
tissue k by the short hand Pk(Z) where the random vector Z =
{{Sv}v∈Nv

, Fv , Nv}. In this paper k takes K = 3 different values
that correspond to the labels for WM, GM, and CSF.

To define the optimal tissue segmentation, first consider a dis-
crete random variable L : V → Z, where Z is the set of inte-
gers, that maps each voxel v ∈ V to the class it belongs to; i.e.,
Lv = k if voxel v belongs to tissue k. Let {Vk}

K

k=1 denote a
mutually-exclusive and collectively-exhaustive decomposition of the
brain voxels V intoK regions.

We model the multivariate tissue PDFs using Parzen-window
nonparametric density estimation. For the piecewise stationary-
ergodic MRF, this gives the multivariate probability that the set of
values zv in the structural-MR, FA, and tensor-norm images at voxel
v belong to tissue k as

Pk(zv) ≈
1

|A|

∑

u∈U

G(zv ; zu, Ψ), (1)

where the set U is a small subset of Vk chosen randomly in the area
of the brain surrounding voxel v, G(·; μ, Ψ) is a Gaussian kernel
with mean μ and a diagonal covariance matrixΨ. More details about
this scheme can be found in [1].

We now define the optimal segmentation. Using the set of multi-
variate tissue PDFs {Pk(Z)} for theK tissues, we can define a joint
PDF P (L,Z) between the label values and the image values. Dur-
ing the creation of the image, at each voxel v, an instance (lv, zv)
was drawn from the multivariate PDF. What was observed, how-
ever, were only the image values zt. The label values lt must be
inferred from the image data in conformation with the multivari-
ate image model. We define the optimal segmentation as the one
that maximizes the mutual information between L and Z, namely
I(L,Z). Intuitively, the mutual information between two random
variables quantifies the degree of functional dependence between
them. For functionally-dependent random variables, each variable
uniquely determines the other, and the mutual information is maxi-
mized. On the other hand, independent random variables convey no
information about each other, and their mutual information is zero
(minimal). A desirable segmentation is one in which the image val-
ues provide the most information about the class labels. Likewise,
knowing the voxel class should provide the most reliable estimate of
the voxel neighborhood.

We adopt an iterative steepest descent scheme for the optimiza-
tion. We obtain the initial segmentation following a template-based
segmentation approach using the probabilistic tissue atlas publicly
available at the ICBM website 1; we linearly align the structural-MR
image to the ICBM template and map the tissue probabilities from
the template space to the given image. This strategy also implicitly
strips all the non-brain structures from the MR images.

Given a segmentation, {Vn

k = {v ∈ V : Ln

v = k}}K

k=1 at
iteration n, the optimization iterates, until convergence, as follows:

1http://www.loni.ucla.edu/ICBM
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1. For k = 1, 2, 3, and ∀v ∈ V , estimate P n

k (zt) nonparametri-
cally, as described in (1).

2. Update the label at each voxel to increase I(L,Z) using the
rule: Ln+1

v = argmax
k

P n

k (zv).
The algorithm typically convergences in less than 4 iterations.

As described before, in the cortical region, typical DT imaging
resolutions and artifacts may reduce the efficacy of the tensor mea-
sures to distinguish between the WM and GM [10]. Structural-MR
images, on the other hand, do provide reliable intensity contrast to
enable accurate tissue differentiation. The proposed method exploits
this behavior by introducing a spatially-varying anisotropic distance
metric in the multivariate feature space. We use the ICBM template
space to approximate a spatially-varying mask m(v) that roughly
defines the subcortical region;m(v) = α for voxels v inside the sub-
cortical region and m(v) smoothly changes to (1 − α) as the voxel
location moves out of the cortical region. We then replace Ψ in (1)
by Ψv = λvΨ, where λv is a vector whose i-th component equals
m(v) if the i-th component of zv corresponds to a tensor invariant
or equals (1−m(v)) if the i-th component of zv corresponds to the
structural-MR intensity. In this paper, we set α = 0.9 (this free pa-
rameter can be empirically tuned based on the relative quality of the
images of the two modalities in a particular dataset). In this way, the
tensor invariants have a stronger effect in determining the label for a
voxel inside the subcortical regions compared to a voxel outside the
cortical region. At the same time, the tissue labels U ⊂ Vk in the
entire brain contribute in correctly estimating the multivariate tissue
statistics both inside and outside the subcortical region. Thus, the
information in both the structural-MR and DT modalities comple-
ments each other to ease tissue differentiation.

The implementation of the proposed method relies on the Insight
Toolkit (ITK) 2. This paper employs a novel algorithm that incor-
porates careful approximations in the modeling strategy in order to
obtain an order-of-magnitude speedup and reduce memory usage, as
compared to the ITK implementation in [1], without any perceptible
reduction in performance. The running time for the implementation
for the images in this paper is about 6 minutes per iteration using
a standard Pentium 2.66 GHz machine. The method’s algorithmic
complexity is linear in the number of brain voxels.

4. MR IMAGE ACQUISITION

The images used in this paper were acquired using a 1.5T Siemens
scanner for a clinical study [12]. The structural-MR image was ac-
quired using a T1-weighted magnetization-prepared rapid gradient
echo (MP-RAGE) sequence with a slice thickness of 1 mm, yield-
ing 160 sagittal slices with an in-plane resolution of 1x1 mm. A
single-shot, spin-echo, DT echo-planar imaging (EPI) sequence was
used to get the DT images: 1 image without diffusion gradients
(b = 0 s/mm2) followed by 6 images acquired using noncollinear
diffusion-encoding directions isotropically distributed in space (b =
1000 s/mm2), a slice thickness of 5 mm yielding 20 axial slices with
an in-place resolution of 2x2 mm. This sequence allowed a partial
brain coverage that covered the more superior portions of the brain;
from the top of the brain to the superior third of the cerebellum.

5. RESULTS

Figures 1(a) and (b) show two corresponding axial slices, in the sub-
cortical region, of the structural-MR and DT images, respectively,

2http://www.itk.org

(a) (b)

(c) (d)
Fig. 1. Axial slices showing subcortical regions in the: (a) MR im-
age, (b) FA image, (c) segmentation using the MR image alone, and
(d) segmentation using the orthogonal tensor invariants alone.

that shows the ability of DT data to differentiate subcortical tissue
structures. Figures 1(c) and (d) show the segmentations, for the same
axial slice, obtained by using the the two modalities independently.

Figures 2(a) and (b) compare the information present in the two
modalities in the cortical brain region, where the structural-MR im-
age provides much stronger contrast between the convoluted tissue
structures. Figures 2(c) and (d) show the segmentations obtained by
using the the two modalities independently.

Figures 3(a) and (b) show the tissue segmentation using the pro-
posed multivariate segmentation method in the subcortical and corti-
cal regions, respectively. Figure 3(a) shows significant improvement
in the subcortical segmentation, as compared to the segmentation us-
ing the structural-MR image alone (Figures 1(c)), that enhances the
differentiation between the deep-GM structures (caudate, putamen,
and thalamus) and the adjoining WM. Similarly, Figure 3(b) shows
that the multivariate method retains the same accuracy of tissue dif-
ferentiation in the cortical region, as obtained with the structural-MR
image alone (Figures 2(d)).

6. CONCLUSION

The results in this paper demonstrate the potential of the proposed
method for data-driven segmentation of subcortical tissue structures,
in contrast to typical prior-driven training-intensive schemes. The
only weak prior anatomical knowledge incorporated in the proposed
method is through the smoothed mask of the subcortical region in

215



(a) (b)

(c) (d)
Fig. 2. Axial slices showing cortical regions in the: (a) MR im-
age, (b) FA image, (c) segmentation using the MR image alone, and
(d) segmentation using the orthogonal tensor invariants alone.

the ICBM template. Experiments show that the segmentation result
is robust to minor inaccuracies in the definition of this smooth mask.
Future work will focus on better quantitative validation of the pro-
posed method and its application in clinical studies.

(a) (b)
Fig. 3. Axial slices showing the multivariate segmentation in the
(a) subcortical and (b) cortical region. The segmentation method
coupled/fused a nonparametric MRF model on the structural-MR
image and a nonparametric model for orthogonal tensor invariants.
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